Grade 9/10 Math Circles
 March 29, 2023
 An Introduction to Group Theory Part 2 - Problem Set

1. Compute the following compositions:
(a) $\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right) \circ\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$
(b) $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{array}\right)\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right)$
(c) $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 2 & 1 & 6 & 4\end{array}\right) \circ\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 4 & 3 & 6 & 4\end{array}\right)$
2. Compute the inverses of the following permutations:
(a) $\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$
(b) $\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{array}\right)$
(c) $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 2 & 1 & 6 & 4\end{array}\right)$
3. Let P_{n} be a regular polygon with n sides where $n \geq 4$. Convince yourself that the symmetry group of P_{n} is not the same as the symmetric group on $\{1, \ldots, n\}$.
Hint: how many elements are in $\operatorname{Sym}\left(P_{n}\right)$ and S_{n} ?
